About this book
We believe that many foundational ideas of Probability and
Statistics are best understood when their natural connection is
emphasised. We feel that the interested student should learn the
mathematical rigour of Probability, the motivating examples and
techniques from Statistics, and an instructive technology to perform
computations relating to both in an inclusive manner. These formed
our main motivations for writing this book. We have chosen to use
the R software environment to demonstrate an available computational
tool.
The book is intended to be an undergraduate text for a course on
Probability Theory. We had in mind courses such as the one year
(two semester) Probability course at many universities in India such
as the Indian Statistical Institute or Chennai Mathematical
Institue, or a one semester (or two quarter) Probability course as
is commonly offered as an upper division, post-calculus elective at
many North American universities. The Statistics material and the
package R are introduced so as to emphasise motivations and
applications of the probabilistic material. We assume that our
readers are well-versed in calculus, have a basic understanding of
the theory of sets and functions, combinatorics, and proof
techniques, and have at least a passing awareness of the distinction
between countable and uncountable infinities. We do not assume any
particular experience of Linear Algebra or Real Analysis.
Using this book
The book is a work in progress. We are making draft version of the book
available for comments and feedback, which you may send by email to
any of the authors below. The detailed contents and direct links to each chapter is given below.
You are free to use this book for educational purposes.
Suggested BibTeX citation:
@misc{AST-2016,
AUTHOR = {Siva Athreya, Deepayan Sarkar, and Steve Tanner},
TITLE = {Probability and Statistics with Examples using R},
YEAR = {2024},
NOTE = {Unfinished Book, Last Compilation November 18th, 2024, available
at \url{https://psweur.github.io}}}
Chapters
Table of contents
Preface
Chapter 1: Basic Concepts
details
- 1.1 Defnitions and Properties
- 1.1.1 Definitions
- 1.1.2 Basic Properties
- 1.2 Equally Likely Outcomes
- 1.3 Conditional Probability and Bayes' Theorem
- 1.4 Bayes' Theorem
- 1.5 Independence
- 1.6 Using R for computation
Chapter 2: Sampling and Repeated Trials
details
- 2.1 Bernoulli Trials
- 2.1.1 Using R to compute probabilities
- 2.2 Poisson Approximation
- 2.3 Sampling With and Without Replacement
- 2.3.1 The Hypergeometric Distribution
- 2.3.2 Hypergeometric Distributions as a Series of Dependent Trials
- 2.3.3 Binomial Approximation to the Hypergeometric Distribution
Chapter 3: Discrete Random Variables
details
- 3.1 Random Variables as Functions
- 3.1.1 Common Distributions
- 3.2 Independent and Dependent Variables
- 3.2.1 Independent Variables
- 3.2.2 Conditional, Joint, and Marginal Distributions
- 3.2.3 Memoryless Property of the Geometric Random Variable
- 3.2.4 Multinomial Distributions
- 3.3 Functions of Random Variables
- 3.3.1 Distribution of $f(X)$ and $f(X_1, X_2, \dots , X_n)$
- 3.3.2 Functions and Independence
Chapter 4: Summarizing Discrete Random Variables
details
- 4.1 Expected Value
- 4.1.1 Properties of the Expected Value
- 4.1.2 Expected Value of a Product
- 4.1.3 Expected Values of Common Distributions
- 4.1.4 Expected Value of $f(X_1, X_2, \dots , X_n)$
- 4.2 Variance and Standard Deviation
- 4.2.1 Properties of Variance and Standard Deviation
- 4.2.2 Variances of Common Distributions
- 4.2.3 Standardized Variables
- 4.3 Standard Units
- 4.3.1 Markov and Chebyshev Inequalities
- 4.4 Conditional Expectation and Conditional Variance
- 4.5 Covariance and Correlation
- 4.5.1 Covariance
- 4.5.2 Correlation
- 4.6 Exchangeable Random Variables
Chapter 5: Continuous Probabilities and Random Variables
details
- 5.1 Uncountable Sample Spaces and Densities
- 5.1.1 Probability Densities on $\mathbb R$
- 5.2 Continuous Random Variables
- 5.2.1 Common Distributions
- 5.2.2 A word about individual outcomes
- 5.3 Transformation of Continuous Random Variables
- 5.4 Multiple Continuous Random Variables
- 5.4.1 Marginal Distributions
- 5.4.2 Independence
- 5.4.3 Conditional Density
- 5.5. Functions of Independent Random variables
- 5.5.1 Distributions of Sums of Independent Random variables
- 5.5.2 Distributions of Quotients of Independent Random varibles.
Chapter 6: Summarising Continuous Random Variables
details
- 6.1 Expectation, and Variance
- 6.2 Covariance, Correlation, Conditional Expectation and Conditional Variance
- 6.3 Moment Generating Functions
- 6.4 Bivariate Normals
Chapter 7: Sampling and Descriptive Statistics
details
- 7.1 The empirical distribution
- 7.2 Descriptive Statistics
- 7.2.1 Sample Mean
- 7.2.2 Sample Variance
- 7.2.3 Sample proportion
- 7.3 Simulation
- 7.4 Plots
- 7.4.1 Empirical Distribution Plot for Discrete Distributions
- 7.4.2 Histograms for Continuous Distributions
- 7.4.3 Hanging Rootograms for Comparing with Theoretical Distributions
- 7.4.4 Q-Q Plots for Continuous Distributions
Chapter 8: Sampling Distributions and Limit Theorems
details
- 8.1 Multi-dimensional continous random variables
- 8.1.1 Order Statistics and their Distributions
- 8.2 Distribution of Sampling Statistics from a Normal population
- 8.3 Weak Law of Large Numbers
- 8.4 Convergence in Distribution
- 8.5 Central Limit Theorem
- 8.6 Normal Approximation and Continuity Correction
Chapter 9: Estimation
details
- 9.1 Method of Moments
- 9.2 Maximum Likelihood
- 9.3 Confidence Intervals
- 9.3.1 Pivotal Quantity Approach
- 9.3.2 Empirical Coverage Probability of Confidence Intervals
- 9.3.3 Approximate Confidence Intervals using CLT
- 9.3.4 Confidence Intervals for the Population Median
Chapter 10: Hypothesis Testing
details
- 10.1 Introduction
- 10.2 The Goodness of Fit Problem in the Multinomial Model
- 10.3 Independence of Two Categorical Attributes
- 10.4 Testing in the Parametric Setup: The Intuitive Approach
- 10.5 The General Approach: Likelihood Ratio Test
- 10.6 Specific Examples
- 10.7 Testing for Goodness of Fit
- 10.8 Testing for Independence of Categorical Attributes
Appendix A: Some Mathematical Details
details
- A.1 Transformation of Continuous Random Variables - Jacobian
- A.2 Strong Law of Large Numbers
Appendix B: Tables